Chuyển đến nội dung chính

New Wi-Fi antenna enhances wireless coverage

Researchers at Universiti Teknologi MARA in Malaysia have succeeded in using ionised gas in a common fluorescent light tube as an antenna for a Wi-Fi Internet router.
Wi-Fi routers are essentially two-way radios that connect digital devices to the Internet. But in many buildings, providing complete coverage is a challenge. Radio "dead spots" can occur in areas where solid walls or appliances block a router's signal entirely, or degrade it to become so weak that a portable Wi-Fi device, such as a tablet or phone, cannot connect reliably.

When electricity flows through the argon-mercury vapour in a fluorescent tube, it forms an ionised gas or plasma. Plasma has conducting properties comparable to a common metal radio antenna. This allows an attached router to send and receive radio signals through the light tube on the standard 2.4-gigahertz Wi-Fi frequency in exactly the same way it does through a regular antenna. The router's radio waves can ionise the gas in the tube, so it acts as an antenna whether the light is on or off.
The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end.
According to the research team, the plasma found in a standard 62-centimetre light tube is highly conductive and signal measurements on a test device show that it's strong and stable. Thus plasma compares favourably with standard metal Wi-Fi antennas for transmitting and receiving. The prototype antenna consists of a fluorescent tube that connects to the router through a tuned wire coil in a sleeve slipped over one end. The coil passes the router's radio signal through the glass of the fluorescent tube and into the plasma.
The team says that multiple antennas could be connected to a single router through a building's electrical wiring using existing Wi-Fi standards. This would create a separate antenna in every room where there is a dedicated fluorescent light fixture and provide low cost building-wide wireless Internet coverage.
Further studies by the team may include adding more fluorescent tubes in various configurations to investigate the capability and performance of multiple plasma antenna arrays. One possible application could involve installing this technology in outdoor billboard lights. Each plasma antenna array would then be integrated with a Wi-Fi router to provide large-scale, system-wide wireless communication.
Provided by Universiti Teknologi MARA (UiTM)
Source: phys.org
Read more at: http://testtek.com

Nhận xét

Bài đăng phổ biến từ blog này

Understanding phase noise in signal generators

Source:  http://www.testtek.com/en/detail-info.php?id=2151 Signal generators manufacturers set great store by specifying phase noise, such that, regardless of the application, phase noise is frequently taken as a proxy of the equipment's overall performance. However, phase noise performance might have little or no affect in some applications. For example, 'close in' phase noise creates problems when the signal generator is used as a local oscillator, limiting its sensitivity or impairing bit error rate (BER) performance if used as a clock. 'Far out' phase noise, on the other hand, affects wideband communications systems by raising the noise floor and limiting the reception of poor signals. Choosing a signal generator to match phase noise performance to the requirements of the application can be difficult as manufacturers often characterise phase noise performance at different carrier wave frequencies and at different offsets from the carrier signal. ...

What is Internet of Things (IoT)?

Source:  http://testtek.com/en/detail-info.php?id=2139 The  Internet of Things  ( IoT , sometimes  Internet of Everything ) is the network of physical objects or "things" embedded with electronics, software, sensors and connectivity to enable it to achieve greater value and service by exchanging data with the manufacturer, operator and/or other connected devices based on the infrastructure of International Telecommunication Union's Global Standards Initiative.  Internet of Things connect physically and remotely by individuals, for both public sector and private sector,  in the sense of a computer network grid, of a created electrical device that is in place, with economic benefit and potential usefulness.  Each thing is uniquely identifiable through its embedded computing system but is able to interoperate within the existing  Internet  infrastructure. Experts estimate that the IoT will consist of almost 50 billion obj...
Looking inside supercapacitors could help to build higher performing parts Researchers from the University of Cambridge, together with French collaborators based in Toulouse, have developed a method that allows the inside of supercapacitors to be viewed at the atomic level. The team says this approach could be used in order to optimise and improve the devices. By using a combination of nuclear magnetic resonance (NMR) spectroscopy and scales sensitive enough to detect changes in mass of a 1µg, the researchers could visualise how ions move around in a supercapacitor. They found that, while charging, different processes are at work in the two identical pieces of carbon 'sponge' which function as the electrodes. Dr John Griffin, a postdoctoral researcher in the Department of Chemistry, said: "[Supercapacitors are] much better at absorbing charge than batteries, but since they have much lower density, they hold far less of that charge. Being able to see wh...